Лекция 11. Перечисление графов

Сколько всего есть графов с n вершинами? Частичный ответ на этот вопрос дает следующее рассуждение. Матрица смежности такого графа — это симметричная $n \times n$ -матрица, элементы которой нули и единицы, а на главной диагонали стоят нули. Выше главной диагонали находятся n(n-1)/2 элементов матрицы. Другими словами, имеется $2^{n(n-1)/2}$ способов заполнить верхнюю часть матрицы, а симметрия позволяет каждое такое заполнение продолжить на всю матрицу. Каждой из n! нумераций вершин графа отвечает своя матрица. Если бы изменение нумерации изменяло бы матрицу смежности, то у нас было бы $2^{n(n-1)/2}/n!$ попарно неизоморфных графов. Однако, как мы знаем, различные нумерации могут давать одну и ту же матрицу смежности. Поэтому имеет место неравенство:

число попарно неизоморфных графов с n вершинами $> 2^{n(n-1)/2}/n!$.

Это число очень велико. Например, при n=30 число в правой части $\approx 3.34 \times 10^{98}$.

При малых n ошибка оценки

$$\approx \frac{2^{n(n-1)/2}}{n!}$$

особенно велика. Если, например, n=4, то число в правой части равно $2^6/24 < 3$. Но количество попарно неизоморфных графов с четырьмя вершинами равно 11 (из них связных -6):

Решение задачи о перечислении графов использует теорему Пойя.

Мы будем перечислять графы с n вершинами. Мы считаем, что задана некоторая нумерация множества вершин V, т.е. $V=\{1,2,\ldots,n\}$. Множество X, с которым мы будем работать — это множество функций, область определения которых — это множество пар вершин (т.е. пар чисел) $V^2=\{(i,j):1\leqslant i< j\leqslant n\}$, а область значений — это множество из двух элементов $\{0,1\}$. Такая функция полностью описывает граф: если f((i,j))=0, то i-я и j-я вершины n соединены ребром, а если f((i,j))=1 — то соединены. Иначе это можно описать так: рассмотрим полный граф K_n , т.е. граф с n вершинами, где каждая пара вершин соединена ребром. Раскрасим множество ребер графа n0 в два цвета — черный и белый. Теперь удалим белые ребра.

Группа перестановок действует на множестве V (перенумерация вершин). Но она действует и на множестве V^2 следующим образом. Перестановку s мы рассматриваем как отображение множества $\{1,2,\ldots,n\}$ в себя. Так перестановка s=2,4,1,3 — это отображение $s:\{1,2,3,4\} \to \{1,2,3,4\}\colon s(1)=2,\,s(2)=4,\,s(3)=1,\,s(4)=3$. Перестановка s действует на множестве V^2 так: s переводит пару (i,j) в пару (s(i),s(j)), если s(i)< s(j), и в пару (s(j),s(i)) в противном случае. В терминах теоремы Пойя множество V^2 — это множество M, а множество X — это множество раскрасок элементов V^2 в два цвета — черный и белый. Выбор раскраски задает граф, а перенумерация вершин дает другую раскраску V^2 , но изоморфный граф.

Пример. Пусть n=4. Перестановка s=2,4,1,3 действует на V^2 так:

$$s((1,2)) = (2,4), \ s((1,3)) = (1,2), \ s((1,4)) = (2,3), \ s((2,3)) = (1,4) \ s((2,4)) = (3,4)), \ s((3,4)) = (1,3).$$

Если

$$f((1,2)) = 0$$
, $f((1,3)) = 1$, $f((1,4)) = 0$, $f((2,3)) = 0$, $f((2,4)) = 1$, $f((3,4)) = 1$,

то

$$g((1,2)) = 1$$
, $g((1,3)) = 1$, $g((1,4)) = 0$, $g((2,3)) = 0$, $g((2,4)) = 0$, $g((3,4)) = 1$,

где g=s(f). Функции f и g задают следующие графы

Разумеется эти графы изоморфны.

Число графов — это число орбит действия группы S_n на множестве раскраскок множества V^2 в два цвета. Чтобы найти число орбит нам нужно вычислить цикловый индекс действия S_n на V^2 .

Пример. n=3. Рассмотрим действие группы S_3 на $V^2=\{(1,2),(1,3),(2,3)\}=\{e_1,e_2,e_3\}$. Имеем

- s = e. Действие s: $(e_1)(e_2)(e_2)$.
- s = (1,2)(3). Действие $s: (e_1)(e_2,e_3)$.
- s = (1,3)(2). Действие $s: (e_1, e_3)(e_2)$.
- s = (1)(2,3). Действие $s: (e_1, e_2)(e_3)$.
- s = (1, 2, 3). Действие $s: (e_1, e_3, e_2)$.
- s = (1,3,2). Действие $s: (e_1,e_2,e_3)$.

1

Таким образом, $Z(G) = (a_1^3 + 3a_1a_2 + 2a_3)/6$. Пусть переменная x отвечает белому цвету, а y — черному. Тогла

$$C(x,y) = \frac{(x+y)^3 + 3(x+y)(x^2+y^2) + 2(x^3+y^3)}{6} = x^3 + x^2y + xy^2 + y^3.$$

Это означает, что у нас есть четыре графа с тремя вершинами: один граф без ребер, один с одним ребром, один с двумя ребрами и один с тремя ребрами.

Пример. n = 4. Рассмотрим действие группы S_4 на $V^2 = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}.$

- Единичная перестановка e все шесть элементов множества V^2 оставляет на месте. Соответствующий одночлен a_1^6 .
- 2-цикл, например (1,2)(3)(4), действует так: (1,2) и (3,4) неподвижны; $(1,3) \to (2,3) \to (1,3)$; $(1,4) \to (2,4) \to (1,4)$. Соответствующий одночлен $a_1^2 a_2^2$. Так как в S_4 шесть 2-циклов, то они дают в цикловый индекс вклад $6a_1^2 a_2^2$.
- 3-цикл, например (1,2,3)(4), действует так: $(1,2) \to (2,3) \to (1,3) \to (1,2)$; $(1,4) \to (2,4) \to (3,4) \to (1,4)$. Соответствующий одночлен a_3^2 . Так как в S_4 восемь 2-циклов, то они дают в цикловый индекс вклад $8a_3^2$.
- 4-цикл, например (1,2,3,4), действует так: $(1,2) \to (2,3) \to (3,4) \to (1,4) \to (1,2)$; $(1,3) \to (2,4) \to (1,3)$. Соответствующий одночлен a_2a_4 . Так как в S_4 шесть 4-циклов, то они дают в цикловый индекс вклад $6a_2a_4$.
- 2,2-цикл, например (1,2)(3,4), действует так: (1,2) и (3,4) неподвижны; $(1,3) \rightarrow (2,4) \rightarrow (1,3)$; $(1,4) \rightarrow (2,3) \rightarrow (1,4)$. Соответствующий одночлен $a_1^2 a_2^2$. Так как в S_4 три 2,2-цикла, то они дают в цикловый индекс вклад $3a_1^2 a_2^2$.

Таким образом

$$Z(G) = \frac{a_1^6 + 9a_1^2a_2^2 + 8a_3^2 + 6a_2a_4}{24}.$$

Подставляя c_i вместо a_i , получаем

$$C(x,y) = x^6 + x^5y + 2x^4y^2 + 3x^3y^3 + 2x^2y^4 + xy^5 + y^6,$$

что полностью согласуется с нашим списком графов на четырех вершинах.

Перечисление связных графов

Две задачи — перечисление графов и перечисление связных графов взаимосвязаны. Любой граф является объединением своих компонент связности. Компонента связности графа G=(V,E), определенная вершиной $v\in V$, — это совокупность всех вершин (и инцидентным им ребер из E), которые соединены путями с вершиной v. Каждая компонента связности является связным графом. Например, у графа ниже три компоненты связности.

· · · · ·

Обозначим через g_n число графов с n вершинами, а через c_n — число связных графов с n вершинами. Если G=(V,E) несвязен, то он есть объединение связных графов $G_i=(V_i,E_i),\ i=1,\ldots,k,$ причем $|V|=|V_1|+\ldots+|V_k|,\ |E|=|E_1|+\ldots+|E_k|.$

Таким образом, зная числа c_i , мы можем найти число g_n : нужно перебрать всевозможные разбиения числа n: разбиению $n=k_1+\ldots+k_s,\,k_1\geqslant k_2\geqslant\ldots\geqslant k_s$, отвечает разбиение графа G с n вершинами в объединение s компонент связности G_1,\ldots,G_s , где связный граф G_i имеет k_i вершин.

Пример. Пусть n=4. Мы знаем, что $c_1=1$, $c_2=1$, $c_3=2$, $c_4=6$. Имеется 5 разбиений числа 4: 4, 3+1, 2+2, 2+1+1, 1+1+1+1.

- Первое разбиение отвечает случаю связного графа таких графов 6.
- Второе разбиение отвечает случаю двух компонент связности с тремя вершинами и с одной вершиной. Таких графов 2.
- Третье разбиение отвечает случаю двух компонент связности с двумя вершинами каждая. Такой граф один.
- Четвертое разбиение отвечает случаю трех компонент связности одна с двумя вершинами и две с одной вершиной. Такой графов один.
- ullet Пятое разбиение отвечает случаю четырех компонент связности с одной вершиной каждая. Такой граф один.

Следовательно, $g_4 = 11$.

На языке производящих рядов эту конструкцию можно описать так. Количество графов с n вершинами равно коэффициенту при t^n в произведении рядов

$$(1 + c_{1,1}t + c_{1,2}t^2 + c_{1,3}t^3 + \ldots) \times (1 + c_{2,1}t^2 + c_{2,2}t^4 + \ldots) \times (1 + c_{3,1}t^3 + c_{3,2}t^6 + \ldots) \times \ldots$$

Здесь коэффициент $c_{i,j}$ равен числу графов, состоящих из j связных компонент, причем каждая компонента имеет i вершин. То-есть $c_{i,j}$ — это количество способов выбрать j связных графов из c_i , причем в выборке могут быть и одинаковые графы. Но формула для выборов с повторениями обсуждалась на первой лекции. Таким образом,

$$c_{i,j} = C_{c_i+j-1}^{j-1},$$

и i-й сомножитель в произведении есть

$$1 + c_i t^i + \frac{1}{2} c_i (c_i + 1) t^{2i} + \frac{1}{6} (c_i + 2) (c_i + 1) c_i t^{3i} + \dots = (1 - t^i)^{-c_i}.$$

Следовательно,

$$1 + g_1 t + g_2 t^2 + g_3 t^3 + \ldots = \prod_{i=1}^{\infty} (1 - t^i)^{-c_i}.$$

Перейдем к логарифмам:

$$\ln(1+g_1t+g_2t^2+\ldots) = \sum_{i=1}^{\infty} (-c_i)\ln(1-t^i).$$

Разложим каждый логарифм в ряд и приведем подобные. Легко видеть, что в разложении $\ln(1-t^i)$ в степенной ряд слагаемое t^n появляется лишь в том случае, когда i — делитель n. Тогда соответствующий коэффициент равен ic_i/n . Следовательно,

$$\ln(1 + g_1 t + g_2 t^2 + \ldots) = \sum_{i=1}^{\infty} \frac{a_i}{i} t^i,$$

где

$$a_n = \sum_{d|n} dc_d.$$

Здесь сумма берется по всем делителям числа n. Таким образом,

$$1 + g_1 t + g_2 t^2 + \dots = \exp(a_1 t + \frac{a_2}{2} t^2 + \frac{a_3}{3} t^3 + \dots).$$

Правило перехода от $a_i \ g_i$ достаточно простое. Действительно, продифференцируем это равенство. Имеем

$$g_1 + 2g_2t + 3g_3t^2 + \dots = \exp(a_1t + \frac{a_2}{2}t^2 + \frac{a_3}{3}t^3 + \dots) \times (a_1 + a_2t + a_3t^2 + \dots) =$$

$$= (1 + g_1t + g_2t^2 + g_3t^3 + \dots) \times (a_1 + a_2t + a_3t^2 + \dots).$$

Теперь сравниваем коэффициенты при t^{n-1} :

$$ng_n = a_n + \sum_{i=1}^{n-1} g_i a_{n-i}.$$

Так как $g_1 = a_1$, то мы получили рекуррентную формулу для вычисления чисел g_n .

Пример. Так как $c_1 = 1$, $c_2 = 1$, $c_3 = 2$, $c_4 = 6$, то $a_1 = 1$, $a_2 = 3$, $a_3 = 7$, $a_4 = 27$. И далее $g_2 = (3+1\times1)/2 = 2$, $g_3 = (7+2\times1+1\times3)/3 = 4$, $g_4 = (27+7\times1+3\times2+1\times4)/4 = 11$.

Обратно. Связь между числами g_n и a_n дает возможность перейти от g_i к a_i :

$$a_n = ng_n - \sum_{k=1}^{n-1} a_k g_{n-k}.$$

Переход от a_i к c_i требует знания теории чисел. Приведем окончательную формулу:

$$c_n = \frac{1}{n} \sum_{d|n} \mu(\frac{n}{d}) a_d.$$

Здесь $\mu(n)$ — это функция Мёбиуса:

$$\mu(n) = \begin{cases} 0, & \text{если } n \text{ делится на квадрат простого числа} \\ 1, & \text{если } n=1 \\ (-1)^k, & \text{если } n=p_1\cdot\ldots\cdot p_k \end{cases}$$

Действительно,

$$c_2 = \frac{1}{2} (\mu(2) \cdot a_1 + \mu(1) \cdot a_2) = \frac{1}{2} (-1+2) = 1$$

$$c_3 = \frac{1}{3} (\mu(3) \cdot a_1 + \mu(1) \cdot a_3) = \frac{1}{3} (-1+7) = 2$$

$$c_4 = \frac{1}{4} (\mu(4) \cdot a_1 + \mu(2) \cdot a_2 + \mu(1) \cdot a_4) = \frac{1}{4} (-3+27) = 6$$